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PREFACE

This report summarizes the work performed under the contract NAS3-96052 during the

FY97 funding period. The objective of this three-year project was to develop and deliver to

NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer

codes, for the analysis, optimization and design of cylindrical functionally graded

materials/structural components for use in advanced aircraft engines (e.g., combustor linings,

rotor disks, heat shields, blisk blades). To satisfy this objective, a quasi one-dimensional version

of the higher-order theory, HOTCFGM-ID, and four computer codes based on this theory, for

the analysis, design and optimization of cylindrical structural components functionally graded in

the radial direction were developed. The theory is applicable to thin multi-phased composite

shells/cylinders subjected to macroscopically axisymmetric thermomechanical and inertial load-

ing applied uniformly along the axial direction such that the overall deformation is characterized

by a constant average axial strain. The reinforcement phases are uniformly distributed in the

axial and circumferential directions, and arbitrarily distributed in the radial direction, thereby

allowing functional grading of the internal reinforcement in this direction.

The three computer codes fgmp.tube.f, fgmp.homog.tube.f, and fgm.gvips.tube.f are

research-oriented codes for investigating the effect of functionally graded architectures, as well

as the properties of the multi-phase reinforcement, in thin shells subjected to axisymmetric ther-

momechanical and inertial loading, on the internal temperature, stress and (inelastic) strain

fields. The reinforcement distribution in the radial direction is specified by the user. The ther-

moelastic and inelastic properties of the individual phases can vary with temperature. The inelas-

tic phases are presently modeled either by the incremental plasticity theory (within fgmp.tube.3'),

or GVIPS unified viscoplasticity theory (within fgm.gvips.tube.f). A homogenization capability

within fgmp.homog.tube.f admits the inclusion of heterogeneous phases. The computer code

fgmp.tube.opt.f combines the major analysis module resident in fgmp.tube.f with a

commercially-available optimization algorithm, and enables the user to identify radial distribu-

tions of the reinforcement phase that minimize (or maximize) user-defined objective functions

such as internal moments, resultants or plastic strains.

Notice: The fgmp.tube.f, fgmp.homog.tube.f, fgm.gvips.tube.f, and fgmp.tube.opt.f codes are

being delivered to the NASA-Lewis Research Center strictly as research tools. The authors of

the codes do not assume liability for application of the codes beyond research needs. Any ques-

tions or related items concerning these computer codes can be directed to either Professor

Marek-Jerzy Pindera at the Civil Engineering & Applied Mechanics Department, University of

Virginia, Charlottesville, VA 22903 (Tel: 804-924-1040, e-mail: marek@virginia.edu), or Pro-

fessor Jacob Aboudi at the Department of Solid Mechanics, Materials & Structures, Faculty of

Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel (Tel: 972-3-640-8131,

e-mail: aboudi @eng.tau.ac.il).
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1.0 INTRODUCTION

This final report summarizes the work funded under the contract NAS3-96052 during the

FY97 funding period. The objective of this three-year project was to develop and deliver to

NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer

codes, for the analysis, optimization and design of cylindrical functionally graded

materials/structural components for use in advanced aircraft engines (e.g., combustor linings,

rotor disks, heat shields, blisk blades). These theories will enable the designer to enhance the

performance of aircraft engine structural components through the use of functionally graded

architectures/microstructures. The analytical approach employed in the theories' construction

explicitly couples microstructural and macrostructural effects in cylindrical bodies of revolution

wherein the reinforcement phase or phases are spatially varied to improve thermomechanical

performance (deformation, thermal fatigue resistance and life). At present, functionally graded

structural components cannot be analyzed accurately using the standard micromechanics

approach based on the representative volume concept coupled with macrostructural analysis in a

noninteractive manner. Such coupling is explicitly taken into account in the present theoretical

development, thereby providing the capability and means (through the related computer code(s))

to accurately analyze the response of cylindrical functionally graded structural components.

The work performed during the FY97 funding period resulted in the development of a quasi

one-dimensional version of the higher-order theory, HOTCFGM-1D, and four computer codes

based on this theory, for the analysis, design and optimization of cylindrical structural com-

ponents functionally graded in the radial direction. The theory is applicable to multi-phased

composite thin shells/cylinders subjected to macroscopically axisymmetric thermomechanical

and inertial loading applied uniformly along the axial direction such that the overall deformation

is characterized by a constant average axial strain and stress, Fig. 1. The reinforcement phases

are uniformly distributed in the axial and circumferential directions, and arbitrarily distributed in

the radial direction, thereby allowing functional grading of the internal reinforcement in this

direction. They can be in the form of continuous fibers, oriented in the axial or circumferential

direction, or discontinuous inclusions. The development of the quasi one-dimensional version

includes inertial body forces in order to account for the effect of rotation, in addition to exter-

nally applied loads, and through-thickness temperature gradients. The applied boundary condi-

tions can be in the form of imposed temperatures on the inner and outer surfaces and/or radial

pressure/displacement. Further, the development has been carried out in a manner that facilitates

incorporation of nonisothermal inelastic constitutive and damage theories within any individual

constituent. At present, classical incremental plasticity theory and GVIPS unified viscoplasticity

theory are available within the developed computer codes.
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Figure 1. A geometric model for the cylindrical higher-order theory HOTCFGM-1D.

The three computer codes fgmp.tube.f, fgmp.homog.tube.f, and fgm.gvips.tube.f are

research-oriented codes for investigating the effect of functionally graded architectures, as well

as the properties of the multi-phase reinforcement, in thin shells subjected to axisymmetric ther-

momechanical and inertial loading, on the internal temperature, stress and (inelastic) strain

fields. The reinforcement distribution in the radial direction is specified by the user. The ther-

moelastic and inelastic properties of the individual phases can vary with temperature and the

elastic phases can be either isotropic or transversely isotropic. In the latter case, the axis of sym-

metry can be in the radial, circumferential or axial direction. The inelastic phases can be

modeled either by the classical plasticity (within fgmp.tube.f) [1], or GVIPS unified viscoplasti-

city theory (within fgm.gvips.tube.f) [2]. A homogenization capability within fgmp.homog.tube.f

admits the inclusion of heterogeneous phases.

The computer code fgmp.tube.opt.f combines the major analysis module in fgmp.tube.f with

the commercially-available optimization code DOT 1 [3]. The total optimization package enables

the user to identify radial distributions of the reinforcement phase that minimize (or maximize)

user-defined objective functions such as internal moments, resultants or plastic strains.

1License for the DOT source code must be purchased separately from VMA Engineering (Vanderplaats, Miura

& Associates, Inc.), 5960 Mandarin Ave., Suite F, Goleta, CA 93117. Phone: (805) 967-0058.
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2.0 ANALYTICAL FOUNDATIONS OF HOTCFGM-1D

The developed theory is a significant extension of the theories previously constructed by

the authors for the analysis and design of functionally graded plates under NASA-Lewis funding

(see Ref. [4] for appropriate references and summary of accomplishments). The analytical

framework of the quasi one-dimensional version of the higher-order theory for cylindrical shells

under axisymmetric loading is based on a second order representation of temperature and dis-

placement fields within the subvolumes used to characterize the material's functionally graded

microstructure, volumetric averaging of the various field quantitites within these subvolumes,

and subsequent satisfaction of the field equations within each subvolume in a volumetric sense,

together with the imposition of boundary and continuity conditions in an average sense between

adjacent subvolumes. This results in a system of algebraic equations for the unknown coeffi-

cients that govern the temperature and displacement field in the individual subvolumes of a

functionally graded cylinder under axisymmetric loading due to through-thickness temperature

gradient, internal/external pressure and inertial body forces caused by steady rotation. The alge-

braic system of equations is implicitly nonlinear due to the use of nonisothermal inelastic consti-

tutive theories (incremental plasticity and GVIPS unified viscoplasticity) for the materials occu-

pying various subvolumes of the functionally graded microstructure. When the classical plasti-

city equations are used to describe the inelastic material behavior, an interative scheme is

employed to solve the nonlinear system of equations [ 1]. A brief outline of the construction of

the one-dimensional higher-order theory for cylindrical functionally graded structural com-

ponents under steady-state thermomechanicai and inertial loading is provided below.

2.1 Analytical Model

The microstructure of the heterogeneous cylindrical structural element shown in Fig. 1 is

discretized into M cells spanning the r-direction. The generic cell (p) used to construct the com-

posite consists of eight subcells designated by the triplet (t_7), where each index o{, 13,T takes on

the values 1 or 2 which indicate the relative position of the given subcell along the r, 0 and z

axis, respectively. The index p, whose range is p = l, 2 ..... M, identifies the generic cell in the r-

direction. The dimensions of the generic cell along the periodic 0 and z directions, hi, h2, and 11,

12, are fixed for the given configuration, whereas the dimensions along the r axis or the function-

ally graded direction, dtp), d_ p), can vary in an arbitrary fashion.

For the specified axisymmetric thermomechanical loading applied in the r- 0 plane, an

approximate solution for the temperature and displacement fields has been constructed by first

approximating the temperature distribution in each subcell of a generic cell using a quadratic

_13), _(_)expansion in the local coordinates r-ttx> z



_ d (p)2 I ,.,_(_)2 h_q)2

1 .,_(_)2 _I_)T1N_+ _b_z -
(1)

_(fl) R(al_')0 (13)and R (al_') is the distance from the origin of the r 0 - z coordinate sys-where y =

tern to the center of the (a[3y) subcell. Given the five unknown coefficients associated with each

subcell (i.e., T/_' _..... T/_/) and eight subcells within each generic cell, 40M unknown quan-

tities must be determined for a composite with M rows of cells in the r-direction containing arbi-

trarily specified materials. These quantities are determined by first satisfying the heat conduction

equation,

__(a) + +/3z_(-----_- - 0 (2)_r a, + R (a"v) +r _-_

as well as the first and second moment of this equation in each subcell in a volumetric sense in

view of the employed temperature field approximation. The components q_al_,) (i = r, 0, z) of the

heat flux vector in the the subcell (a_y) of the (p)th cell in eqn (2) are derived from the tempera-

ture field according to

_)T(a_) _-r(a_) _)T(al_')
q_alh,)=_k(a_) , q_al3_,)__k_a_¢)_, q(afh')_ k_a_)_ (3)

where k_al_'t) are the coefficients of heat conductivity of the material in the subcell (al37).

Subsequently, continuity of heat flux and temperature has been imposed in an average

sense at the interfaces separating adjacent subcells, as well as neighboring cells. Fulfillment of

these field equations and continuity conditions, together with the imposed thermal boundary

conditions at the top and bottom, and left and right surfaces of the composite, has provided the

necessary 40M equations for the 40 unknown coefficients in the temperature field expansion of

the form:

x T = t (4)

where the structural thermal conductivity matrix K contains information on the geometry and

thermal conductivities of the subcells (a[37) in the M cells spanning the functionally graded r-

direction, the thermal coefficient vector T contains the unknown coefficients that describe the



thermalfield in eachsubcell,i.e.,T = [ TI ill) ...... T_ 22) ] where T(pa_) = [ TOoo ), T(loo), T(20o),

T(o2o) ' T(OO2) ](aM), and the thermal force vector t contains information on the thermal boundary

conditions.

Once the temperature field is known, the resulting displacement and stress fields are deter-

mined by approximating the displacement field in each subcell of a generic cell by a quadratic

.Xm -(1_) _('t)expansion in the local coordinates r , y , and as follows:

u_al_') = Wt_) + _a)Wt_) 1 ra--(a)2 1 .,(p)2,x,r(_tl3_') 1.3-(13)2 1 h{.q)2)Wt}to_,g+ 7,Jr -_-,_. )...20o) + _-t y -_- _ (0:_)

1 ,.,_(T) 2
+ _-t-_z -II2)W t_]'_) (5)

u_exit') = _([_)W_]t_?_) (6)

U_zal_') = g(V)W_]'t) (7)

,,,(ally), (i = 1, 2, 3) are determined from conditions similar towhere the unknown coefficients w i(lmnl

those employed in the thermal problem. In this case, there are 56 unknown quantities in a gen-

eric cell (p). The determination of these quantities parallels that of the thermal problem with the

thermal equations and quantities replaced by their mechanical analogues as briefly described

below.

First, the heat conduction equation is replaced by the three equilibrium equations,

_r m + _ + 0_(_) + __) =0Oy R (n_'_) + r

(8)

(9)

(10)

where F_eta) is the component of the body force due to the radial acceleration. The components

of the stress tensor, assuming that the material occupying the subcell (_t[gT) of the (p)th cell is

orthotropic, are related to the strain components through the generalized Hooke's law:



_!_) - _ijk]--(_l_)(E[_I_) - E_(a_))- rl_ _)T(_I_) (ll)

where c_jXldI_') are the elements of the stiffness tensor, t_i_(al_') are the inelastic strain components,

and the elements F_ I_Y)of the so-called thermal tensor are the products of the stiffness tensor

and the thermal expansion coefficients. For isotropic elastic or inelastic materials eqn (11)

reduces to:

= _,(¢zflq,)e-kk ij + Z_(otl]_')Eij ij z-Ft(apy)'-'ij (12)

where X(_tl_) and _al_) are the Lame's constants of the material filling the given subcell ((xl3y).

The components of the strain tensor in the individual subcells are, in turn, obtained from the

strain-displacement relations.

Second, the continuity of tractions and displacements at the various interfaces replaces the

continuity of heat fluxes and temperature. Finally, the boundary conditions involve the appropri-

ate mechanical quantities.

Application of the above equations and conditions in a volumetric and average sense,

respectively, has produced a system of 56M algebraic equations in the field variables within the

cells of the functionally graded composite of the form:

KU=f+g (13)

where the structural stiffness matrix K contains information on the geometry and ther-

momechanical properties of the individual subcells ((xl37) within the cells comprising the func-

tionally graded composite, the displacement coefficient vector U contains the unknown coeffi-

cients that describe the displacement field in each subcell, i.e., U = [ Ut Ill) ...... U_ 22) ] where

U (°tl_) = [ Wx(o0o) ..... W3(001 ) ](0t13_),and the mechanical force vector f contains information on

the boundary conditions, body forces and the thermal loading effects generated by the applied

temperature or heat flux. In addition, the inelastic force vector g appearing on the right hand side

of eqn (13) contains inelastic effects given in terms of the integrals of the inelastic strain distri-
in m (.

butions Eij(°tl3_/)_, ct), y , that are represented by the coefficients
D (otl3Y)

lxij(l, re,n),

R(CtBy) ] 1 I

ij(Lm,n, _(l+21)(l+2m)(l+2n) j, [ j-Ei_(_lBy)pl(_t_))pm(_B))pn(_y))dr_t_)d_B)d_Y)
_t(al_y) 4 _ _ __ _]

(14)
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where the non-dimensionalized variables _l')'s, defined in the interval -1 < 41.) < 1, are given in

terms of the local subceU coordinates as follows: ;t a) = r-ta)/(d_)/2), ;_= y(13_/(h_q)/2), and

_,) = _C't)/(1_,/2), and where Pl('), Pro('), and Pn(') are Legendre polynomials of orders 1, m and n.

These integrals depend implicitly on the elements of the displacement coefficient vector U,

requiring an incremental solution of eqn (13) at each point along the loading path. The formula-

tion is sufficiently general to admit either rate-independent incremental plasticity or rate-

dependent unified viscoplasticity constitutive theories.

2.2 Optimization Scheme

The solution procedure for the inelastic response of a functionally graded cylinder

described in the preceding section provides a mechanism for extracting the magnitudes of tem-

perature, stress and (plastic) strain fields in the individual phases for the prescribed values of the

reinforcement's dimensions, radial distributions and material parameters. In order to efficiently

select those geometric arrangements that yield a desirable or optimal temperature, stress or (plas-

tic) strain patterns, it is necessary to incorporate the outlined solution procedure into an optimi-

zation algorithm. This is readily accomplished since closed-form expressions, eqns (4) and (13),

are available that describe the response of the functionally graded cylinder cylinder to the speci-

fied loading in terms of the cylinder's geometric parameters and the constituent materials' pro-

perties. By varying the geometric parameters or design variables in an optimization scheme,

optimal radial distributions of the reinforcement phases can be determined that minimize or

maximize the specified objective function. The optimization algorithm to be described in this

section, together with the analysis algorithm described earlier, constitute the two major modules

in the optimization code fgmp.tube.opt.f developed under the terms of the contract.

The optimization problem is, in general, formulated as follows,

Minimize or maximize the user-defined objective function F(X), where X is a set of design vari-

ables, subject to the constraints gj (X) < 0 where j = 1..... M, with the following side constraints,

XI < Xi < X u where i = 1..... N, with u and I denoting upper and lower limits for each design

variable X i .

In order to allow the user sufficient flexibility to define a wide range of optimization prob-

lems, the objective function F(X) and the constraint functions gj(X) within fgmp.tube.opt.f are

user-constructed functions that have to be coded into the computer program. The design vari-

ables employed in fgmp.tube.opt.f are those parameters that describe the reinforcement phases'

radial distributions, namely the radial spacings between individual fibers/inclusions. Finally, the



side constraints(i.e., lower and upper bounds) that can be imposedon the designvariables

shouldbecommensuratewith the physicalproblemat hand,suchasminimum radial distances

betweenthereinforcementphases.

The optimization algorithm incorporatedin the softwarepackageDOT is based on the

method of feasible directions, Vanderplaats [5]. This method, briefly outlined here, essentially

searches the n-dimensional design variable space in an iterative manner along the constraint

boundaries for the "global optimum". Once an initial set of design variables, X0 is specified by

the user, the search procedure is carried out according to the following algorthim,

X q = X q-I + _* S q (15)

where q is the iteration number, X q is the vector of design variables at the q-th iteration, S q is

the current direction in the n-dimensional design variable space, and _* is the distance travelled

along the search direction specified by S. In this method, the usable sector is defined as any

direction S in the design space that improves the objective function. This is defined mathemati-

cally in terms of the inequality,

VF(Xo).S _<0 (16)

where VF(Xo) is the gradient of the objective function at the given design point. The feasible

sector is defined in any direction S in the design space which does not violate the design con-

straints. This is defined mathematically by the following inequality,

Vg I (Xo)'S < 0 (17)

where Vgl (X0) is the gradient of the constraint function at the present design point. The inter-

section of the two sectors is called usable-feasible sector. These sectors are indicated in Fig. 2.

Any search direction S in this sector will improve the design, and at the same time, will not

violate any of the design constraints. Once a suitable search direction is found, a one-

dimensional search is performed to locate the distance tx* to the minimum (or maximum) in that

direction. The newly located design is then defined as the next design point. This process is

repeated at each design point until the convergence criteria is reached (in this case the Kuhn-

Tucker conditions).
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3.0 DELIVERABLES

Brief descriptions of the features and capabilities of the computer codes fgmp.tube.f,

fgmp.homog.tube.f, fgm.gvips.tube.f, and fgmp.tube.opt.f for the analysis and design of radially

functionally graded cylinders, delivered to the NASA-Lewis Research Center in fulfillment of

the terms of the contract NAS3-96052 are provided in the following sections.

3.1 Analysis Codes

The computer codes fgmp.tube.f, fgmp.homog, tube.f, and fgm.gvips, tube.f enable the user to

investigate the internal temperature, stress and (inelastic) strain fields in cylindrical structural

components with radial functionally graded reinforcement in the form of continuous fibers or

discontinuous inclusions subjected to axisymmetric thermomechanical and inertial loading. Each

of these Fortran codes is first compiled in order to generate an executable file called a.out which,

in turn, is executed by typing the command of the same name at the unix prompt. The code

fgmp.tube.f is employed when the inelastic material response of the individual homogeneous

phases is modeled using the classical incremental plasticity theory, whereas fgm.gvips.tube.f is

employed for homogeneous phases modeled with the GVIPS unified viscoplasticity theory. The

code fgmp.homog.tube.f has been developed for modeling functionally graded cylinders contain-

ing heterogeneous phases wherein the response of the individual constituents is described by the

classical incremental plasticity theory. In this case, the macroscopic response of the heterogene-

ous phases is calculated using the generalized method of cells micromechanics model [6].

The structure of the input data files is similar for these three codes and the definitions of the

input variables associated with each READ statement are well-documented directly within the

codes. A brief overview of the structure of the input data file is provided below for fgmp.tube.f

and further elaborated upon in Appendix 1. An example of this input file is given in Appendix 2

for the problem of a rotating SiC/Ti tube investigated in the following section. The structure of

the input data files forfgm.gvips.tube.f andfgmp.homog, tube.f is similar, with appropriate modif-

ications for the slightly different capabilities of these two codes, i.e., use of GVIPS viscoplasti-

city in place of classical incremental plasticity in the case offgm.gvips.tube.f, and use of hetero-

geneous phases in place of homogeneous phases in the case offgmp.homog.tube.f.

The data is read from the input file fgmp.tube.data and the results are written to the three

output files fgmp.tube.out, fgmp.tube.plot, and fgrnp.tube.plot.anal. The input data consists of

several blocks. Block 1 is designated for the specification of the number of the individual

phases, and their temperature-dependent material parameters, that make up the cylinder's func-

tionally graded microstructure. Each phase is homogeneous and can be either elastic or inelastic.

10



Elastic phases can be either isotropic or transversely isotropic. In the latter case, the axis of sym-

metry can be in the radial, circumferential or axial direction. Inelastic phases must be isotropic

and are modeled by the classical plasticity with isotropic hardening in conjunction with a bil-

inear representation of the elastoplastic stress-strain curve. Block 2 is designated for the specifi-

cation of the loading history, which can involve the simultaneous application of temperature,

internal and external pressure, average axial stress or uniform axial strain, and steady-state angu-

lar velocity in a monotonic manner. As the loading is applied incrementally, information

required for the solution of eqns (4) and (13) is also provided in this block (number of load

increments and number of iterations at each load increment used in Mendelson's iterative solu-

tion of these equations), together with the manner in which the results generated by the program

are written to the output filesfgmp.tube.out andfgmp.tube.plot (loading path and geometric loca-

tions). Block 3 is designated for the specification of the cylinder architecture and geometry

involving the number of cells in the radial and circumferential directions, subcell dimensions

within each cell, and the inner radius of the cylinder. The assignment of different phases to the

individual subcells is also specified in Block 3. The last block, Block 4, is designated for the

specification of the order of Legendre polynomials employed in approximating the plastic strain

field in the individual subcells, eqn (13), and the number of collocation points employed to

integrate the plastic strains.

The input data is echoed to the output filefgmp.tube.out. In addition, this file contains tem-

perature, stress and (plastic) strain fields in the individual subcells at the specified points of the

loading history. An example of this output file is given in Appendix 3 for the problem of the pre-

viously mentioned rotating SiC/Ti tube. The output file fgmp.tube.plot contains temperature,

stress and (plastic) strain distributions along the radial direction of the functionally graded

cylinder that can be used directly for plotting purposes. The output file fgmp.tube.plot.anal con-

tains exact analytical solutions to four elasticity problems of a homogeneous hollow cylinder

subjected to thermal and mechanical loading that can be used to verify the accuracy of the

higher-order theory. The four solutions involve the following boundary conditions:

• Radial displacement specified on inner surface and radial traction on outer surface

• Radial traction specified on inner and outer surface

• Steady-state angular velocity specified; no applied mechanical loading

• Temperature specified on inner and outer surface; no applied mechanical loading

In all these cases both plane strain and generalized plane strain solution are provided.

11



The capabilitiesand optionsavailablewithin the threeanalysiscodesare summarizedin
Table 1.

Table 1.Capabilitiesavailablewithin theanalysiscodes.

Type

Functionallygraded
cylinder geometry

Constitutivemodels

Phases

Integrationschemes

Loadingcapabilities

Predictivecapabilities

Description

Reinforcement: continuous or discontinuous

Spacing: arbitrarily nonuniform (user-specified)
direction; axially & circumferentially periodic

in the radial

Elastic: isotropic, transversely isotropic, orthotropic materials

Plastic: incremental plasticity (Prandtl-Reuss relations) with
isotropic hardening and bilinear representation of the elastoplastic
stress-strain response (fgmp.tube.f)

Viscoplastic: GVIPS unified viscoplasticity theory for isotropic
materials (fgm. gvips, tube.j_

Homogeneous: fgmp. tube.f and fgm.gvips, tube.f codes

Heterogeneous: fgmp.homog.tube.f code

Spatial: successive elastic solutions (incremental plasticity)
Time: forward Euler integration technique (GVIPS viscoplasticity)

Thermal: steady-state, through-thickness temperature gradient

Mechanical: steady-state internal and external pressure, radial

displacement, or mixed

Inertial: steady-state rotation

Through-thickness temperature distributions
Through-thickness stress and (plastic) strain distributions

12



3.2 Optimization Code

The optimization code fgmp.tube.opt.fenables the user to identify those optimum function-

ally graded architectures in cylindrical structural components that minimize (or maximize) user-

constructed functions involving temperature, stress and (plastic) strain fields induced by axisym-

metric thermomechanical and inertial loading. As indicated in Section 2.2, this is accomplished

through variation of the reinforcement's radial spacing. The information generated by the optim-

ization code can, in turn, be employed for design purposes.

In essence, fgmp.tube.opt.f is based on two modules, namely: the analysis code based on the

developed theory which, in addition to generating the elastoplastic solution to the functionally

graded cylinder subjected to specified loading, also controls the execution of the optimization

procedure; and the optimization package DOT. The data provided during the problem definition

stage through the user-supplied input files is subsequently used to generate a solution to the

defined elastoplastic boundary-value problem which, in turn, is used as input to the optimization

algorithm. The code is first compiled in order to generate an executable file called a.out which,

in turn, is executed by typing the command of the same name at the unix prompt.

There are two input data files required to run the executable file, namely

fgmp.tube.opt.data.initial and fgmp.tube.opt.data. The input file fgmp.tube.opt.data.initial

defines the type of optimization problem (minimization or maximization of objective function),

method of optimization available within DOT, and contains information on the initial values of

the design variables (radial spacings between individual reinforcement). The input file

fgmp.tube.opt.data contains information of the material properties of the individual phases, load-

ing and write options, architecture and dimensions of the cylinder, and how the plastic strain

field in eqn (13) is approximated and integrated. The structure of this file is the same as that of

fgmp.tube.data employed in the code fgmp.tube.f and, with the exception of few lines directly

relevant to the optimization problem, contains the same information. The structure of these two

input files is described in detail in Appendix 4, and examples are given in Appendix 5 for the

optimization problem of a rotating SiC/Ti tube investigated in the following section.

The results from the optimization code fgmp.tube.opt.f are written to the following three

output files: fgmp.tube.opt.out, fgmp.tube.pre.opt.plot, and fgmp.tube.opt.plot. The output file

fgmp.tube.opt.out contains the echo of the input data, information on the optimization process

generated by DOT, and initial and final values of the objective function and design variables, as

well as temperature, stress and (plastic) strains in the individual subceils at the specified points

of the loading history for the initial and optimum design variables. The output file

fgmp.tube.pre.opt.plot and fgmp.tube.opt.plot contain initial and optimum temperature, stress

13



and (plastic) strain distributions along the radial direction of the functionally graded cylinder,

respectively, that can be used directly for plotting purposes.

The capabilities of the analysis module employed in fgmp.tube.opt.f are the same as those

offgmp.tube.f. Table 2 summarizes the features and capabilities offgmp.tube.opt.f.

Table 2. Capabilities available within the optimization code.

Type

Functionally graded

cylinder geometry

Constitutive models

Phases

Integration schemes

Loading capabilities

Optimization features

Description

Reinforcement: continuous or discontinuous

Spacing: radially nonuniform, axially & circumferentially periodic

Elastic: isotropic, transversely isotropic, orthotropic materials

Plastic: incremental plasticity (Prandtl-Reuss relations) with
isotropic hardening and bilinear representation of the elastoplastic
stress-strain response

Homogeneous

Spatial: successive elastic solutions (incremental plasticity)

Thermal: steady-state, through-thickness temperature gradient

Mechanical: steady-state internal and external pressure, radial

displacement, or mixed

Inertial: steady-state rotation

Design variables: radial spacing between individual continuous or
discontinuous inclusions

Objective functions: circumferential moment, plastic strain, user-
defined function

Constraints: radial spacing, user-defined function

14



4.0 SUMMARY OF RESEARCH ACTIVITIES AND RESULTS

The development of the aforementioned computer codes was accompanied by the following

investigations:

• Code validation

• Investigation of microstructural effects in SiC/Ti tubes subjected to internal pressure and

steady-state rotation (coupled versus homogenized approach)

• Optimization of SiC/Ti tubes subjected to internal pressue

• Optimization of rotating SiC/Ti tubes

These investigations demonstrate the superiority of the coupled approach in the analysis of

MMC cylindrical components as well as the developed codes' capability as analysis and design

tools. The results of these investigations are currently being summarized in a number of confer-

ence and refereed journal papers [7,8,9].

The results presented in this section have been generated using the material properties

given in Table 3. The inelastic response of the individual phases is modeled using the incremen-

tal plasticity theory with isotropic hardening in conjunction with a bilinear representation of the

elastoplastic stress-strain response.

Table 3. Thermoelastic and plastic parameters of titanium and nickel alloys, and SiC fiber.

Material Youngs' Modulus Poisson's ratio Yield stress Hardening slope

(GPa) (MPa)

Ti-24A1-11Nb ! 10.3 0.26 371.6 23.0

NiAI 193.0 0.32 315.1 3.4

SiC 399.9 0.25

4.1 Validation Studies

Figure 3 illustrates the comparison between the predictions of HOTCFGM-1D and an

exact analytical solution for a homogeneous Ti-24AI-11Nb tube with an inner radius of 0.02 m

and an outer radius of 0.21 m, which yields an aspect ratio (inner radius / thickness) of 20, sub-

jected to an internal pressure of 19.294 MPa. At this pressure level, the plastic zone has just

reached the outer radius of the tube. The exact analytical solution is described in Ref. [10].
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Figure 3(top) presentsthe comparisonfor the axial stressdistribution Ox_ (r), Figure 3(middle)

presents the comparison for the circumferential stress distribution o00(r), and Figure 3(bottom)

presents the comparison for the radial stress distribution on(r). In the case of the circumferential

and radial stress distributions, the predictions of the higher-order theory differ from the exact

analytical results by one or two percent. In the case of the axial stress distributions, somewhat

higher differences are observed due to the very small magnitudes of the axial stress.

Figure 4 presents the axial (top), circumferential (middle), and radial (bottom) stress distri-

butions predicted by the higher-order theory in a four-layer tube, composed of alternating Ti-

24A1-11Nb and NiAl plies of equal thickness, and subjected to an internal pressure of 82.7 MPa.

The innermost ply is composed of the titanium alloy, and the inner and outer radii of the tube are

25.4 mm and 30.5, respectively, yielding layer thickness of 1.3 mm. Included in the figure are

the exact analytical predictions taken from Ref. [11]. Comparison of the higher-order theory

predictions and exact results reveals that the axial and circumferential stress distributions are

somewhat underestimated by the higher-order theory in the two middle layers and the titanium

layers, respectively, while the radial stress distributions predicted by the two approaches are

essentially the same. The differences can be explained by noting that the aspect ratio of the tube

is very low (5) while the higher-order theory's framework is explicitly based on the assumption

that the aspect ratio of a cylindrical component is high. The above comparison illustrates that the

predictive capability of the theory can be quite good even for cylindrical components with rela-

tively small aspect ratios. It should be noted, however, that the theory's accuracy will generally

deteriorate with the cylindrical component's decreasing aspect ratio. This was ascertained in a

parametric study using the data employed in the first example wherein the tube's thickness was

increased to produce aspect ratios of 10 and 5.

The last set of results shown in Figure 5 presents the comparison between the predictions of

HOTCFGM-1D and an exact analytical solution for the homogeneous tube of the first example

subjected to an internal temperature of I°C and outer temperature of 0°C. Virtually no differ-

ences are observed between the HOTCFGM-1D and exact results for the axial and circumferen-

tial stress distributions. Slightly worse correlation is observed for the radial stress distribution,

which is most likely due to the small magnitudes of this stress component relative to the other

components.
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internal pressure: axial (top); circumferential (middle); and radial stress (bottom) distributions.
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4.2 Analysis of Microstructural Effects

In order to be able to compare the predictions of the higher-order theory with the

commonly-used homogenization-based approaches in the analysis of functionally graded struc-

tural components, and thereby ascertain the importance of microstructural effects, the general-

ized method of cells (GMC) micromechanics model has been employed to develop the computer

code fgmp.homog.tube.f for modeling functionally graded cylinders with heterogeneous phases.

The micromechanics model, which is embedded within the theoretical framework of the higher-

order theory, generates instantaneous effective properties of the heterogeneous phases used in

the course of solving eqns (4) and (13). This capability also allows further validation of the

higher-order theory, and also facilitates justification of its development. The homogenization-

based capability of the computer code fgmp.homog.tube.f is demonstrated herein through two

examples that illustrate the differences between the homogenization-based predictions and the

predictions which explicitly take into account the actual microstructure of a heterogeneous

cylinder. In the first example, a SiC/Ti tube subjected to an internal pressure is considered,

whereas the same tube subjected to steady-state rotation is investigated in the second example.

4.2.1 SiC/Ti Tube Subjected to Internal Pressure

A SiC/Ti cylinder with an inner radius of 25.4 mm and an outer radius of 30.5 mm sub-

jected to an internal pressure of 151.7 MPa was chosen for all the cases investigated. These

dimensions yield an aspect ratio (inner radius ! wall thickness) of 5. For the homogenization-

based cases, as well as the cases involving explicit consideration of the cylinder's heterogeneity,

the fiber volume fraction of the SiC fibers was fixed at 0.4.

To compare the homogenization-based results with the results that take into account the

cylinder's actual heterogeneity, three cylindrical configurations reinforced by axially-oriented

(0 °) fibers were investigated as a function of the microstructural refinement. The coarsest confi-

guration had four rows of fibers through the cylinder's thickness, while the intermediate and the

finest configurations contained ten and twenty rows, respectively. Figures 6 through 9 illustrate

the comparison between the homogenization-based and microstructure-based predictions gen-

erated by the computer codes fgmp.hornog.tube.f and fgmp.tube.f, respectively, for the circum-

ferential, radial, axial, and effective plastic strain distributions in the 0 ° cylinder subjected to the

applied internal pressure. The microstructure-based results were generated in the fiber-matrix

and matrix-matrix representative cross sections of the cylinder's microstructure.

As observed in the figures, the circumferential and axial stress distributions predicted by

the microstructure-based analysis oscillate about the distributions based on the homogenized
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analysis (Figs. 6 and 8), the latter tending to provide average distributions. The amplitude of

stress oscillations decreases with the microstructural refinement, i.e., the number of fiber rows

through the cylinder's thickness, and reaches an asymptotic level for the configuration with

twenty rows of fibers. Interestingly, the radial stress distributions predicted by the

microstructure-based analysis, Fig. 7, become tensile in the matrix-matrix representative cross

section in the cylinder's interior, while in the fiber-matrix cross section the expected compres-

sive distributions are obtained. The deviation of the radial stress distributions from

homogenization-based compressive distributions decreases with increasing microstructural

refinement in both cross sections as in the preceding cases.

The amplitude of the oscillations in the effective plastic strain distributions predicted by the

microstructure-based analysis also decreases with increasing microstructural refinement, reach-

ing an asymptotic level for the configuration with twenty rows of fibers, Fig. 9. Unlike the stress

distributions shown in Figs. 6 through 8, however, the homogenization-based effective plastic

strain distributions are substantially smaller than the microstructure-based distributions, and thus

do not appear to represent average distributions about which the latter predictions oscillate. This

issue deserves further investigation.

4.2.2 SiC/Ti Tube Subjected to Steady-State Rotation

In this example, we focus on the effective plastic strain distributions induced by steady-

state rotation in the three SiC/Ti configurations of the preceding section. The results will demon-

strate that the effect of material's heterogeneity on the plastic strain fields depends on the type of

applied loading, thereby further demonstrating the importance of the higher-order theory.

For each of the three configurations, a rotational velocity was determined which produced

an effective plastic strain of 0.01% at the outer radius of the tube. This rotational velocity results

in full plastification of the entire cross section of the tube. The corresponding rotation velocity

based on the homogenization scheme was also determined. The rotational velocities necessary to

produce full plastification of the heterogeneous configurations normalized by the corresponding

rotational velocity for the homogenized tube were determined to be: O_t.Ohomogenized = 1.07, 1.11,

and 1.12 for the 4-fiber, 10-fiber, and 20-fiber configurations, respectively.

Figure 10 illustrates the effective plastic strain distributions in the fiber-matrix cross sec-

tions of the three configurations. In contrast with the preceding results involving the application

of internal pressure, the present results indicate that the magnitude of the plastic strain field

oscillations increases with increasing microstructural refinement. As in the preceding case, the

magnitude of the plastic strain field predicted by the homogenization-based approach is substan-

tially underestimated relative to the higher-order theory predictions.
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4.3 Optimization Studies

To demonstrate the optimization capability of the computer code fgmp.tube.opt.f, two

examples are presented involving the previously considered 0 ° SiC/Ti tubes subjected to internal

pressure and steady-state rotation. The design variables were the fiber spacings in the through-

thickness direction subject to the constraint that the minimum spacings be greater than one

fourth and one eighth of the fiber diameter in the interior and at the exterior boundaries, respec-

tively. Configurations with four and ten rows of fibers through the cylinder's thickness were

considered, with the initial designs having uniform fiber spacing as in the preceding cases. In the

first example involving internal pressurization, the optimization capability is demonstrated for

elastic phases, while in the second example elastoplastic phases are considered.

4.3.1 Optimization of SiC/Ti Tubes Under Internal Pressure

In this example, the objective function to be minimized was the moment produced by the

circumferential stress component induced by the applied internal pressure in the two configura-

tions. This objective function was coded into the computer program fgmp.tube.optf which was

subsequently recompiled to create an executable file with the chosen objective function. In the

future, the objective function will be located in an appropriate subroutine that will contain a

selection of commonly-used objective functions, including a user-defined function.

The results of the optimization studies are presented in Table 4 and 5 where the initial and

optimum designs and the resulting moments are shown for the two configurations. The first and

last fiber spacings given in the tables refer to the distances between the innermost and outermost

fibers and the inner and outer radii, respectively, while the remaining spacings are the fiber-to-

fiber spacings in the cylinder's interior. As observed, dramatic reductions in the moment pro-

duced by the circumferential stress component can be achieved by biasing the fiber locations

toward the outer radius of the cylinder. Figures I l and 12 illustrate the initial and optimum cir-

cumferential stress distributions in the two configurations.

Table 4. Initial and optimum designs for the 4-fiber configuration.

Design Moment Fiber spacing distances (mm)

Initial -309.9 0.234 0.469 0.469 0.469 0.234

Optimum -0.46 0.414 0.570 0.453 0.336 0.100
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Table 5. Initial and optimum designs for the 10-fiber configuration.

Design Moment Fiber spacing distances (mm)

Initial -300.0 0.093 0.t86 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.093

Optimum 3.2 0.199 0.274 0.246 0.221 0.197 0.175 0.155 0.135 0.113 0.088 0.047

4.3.2 Optimization of Rotating SiC/Ti Tubes

In this example, the objective function to be minimized was the total accummulated effec-

tive plastic strain produced by the steady-state rotation in the outer third of the two configura-

tions. This objective function was again coded into the computer program fgmp.tube.opt.f which

was subsequently recompiled to create an executable file with the new objective function.

The optimization results are presented in Table 6 and 7 where the initial and optimum

designs and the resulting total accummulated plastic strains in the outer third of each configura-

tions are given. Similar to the preceding cases involving internal pressurization, substantial (but

not as dramatic) reductions in the accummulated plastic strain in the outer third of each confi-

guration produced by the steady-state rotation are achieved. In contrast with the preceding case,

however, this is accomplished by biasing the fiber locations toward the cylinder's inner radius.

Table 6. Initial and optimum designs for the 4-fiber configuration.

Design E_n Fiber spacing distances (mm)

Initial 1.10% 0.234 0.469 0.469 0.469 0.234

Optimum 0.48% 0.100 0.200 0.200 0.850 0.520

Table 7. Initial and optimum designs for the 10-fiber configuration.

Design _eff Fiber spacing distances (mm)

Initial 2.26% 0.093 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.093

Optimum 1.37% 0.04 1 0.081 0.081 0.08 ! 0.081 0.081 0.081 0.576 0.343 0.081 0.326
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Figure 13 llustratestheoptimum effective plastic strain distributions in the two configura-

tions that can be compared with the corresponding ones in Fig. 10 for the uniformly spaced con-

figurations. The results indicate that in addition to the reduction in the total accumulated plastic

strain in the outer third of the cylinders' cross sections, the optimum fiber distributions dramati-

cally reduce the plastic strain directly at the outer radius. Further refinement of the optimum

fiber spacings can be obtained by employing the optimum fiber spacings obtained herein as ini-

tial design variables in a second iteration of the optimization procedure. This should eliminate

the plastic strain spike in the 10-fiber configuration in the region immediately adjacent to the

outermost fiber observed in the figure.

5.0 PLANS FOR FUTURE WORK

The second year of the project involves generalization of the quasi one-dimensional version

of the higher-order theory to two dimensions, as outlined in Ref. [12]. This version will enable

the analysis and design of cylindrical structural components functionally graded in two direc-

tions in the cylinder's cross section. This version will also make possible the analysis of finite

cylindrical bodies of revolution, in addition to complete bodies of revolution, thereby allowing

consideration of such aircraft engine structural components as turbine blades.

In addition, work will continue on the development of more user-friendly versions of the

current computer programs, application of these programs to technologically important problems

such as functionally graded combustor linings and thermal barrier coatings, as well as incorpora-

tion of robust integration algorithms, upon their availability, for use with the GVIPS model as

outlined in Refs. [13,14].
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7.0 APPENDICES

7.1 Appendix 1

The input data file fgmp.tube.data is organized into four distinct blocks, as explained in

section 3. I. The structure of the input data file, the variable names and their description read by

the program are given below.

Block 1: Material properties for NMT materials at NTEMP identical temperatures

NMAT

MNAME

ID

NTEMP

IT1, TEMP

CONDATEMP, CONDTTEMP

EATEMP,E'Iq'EMP,GATEMP

FNATEMP,FNTTEMP

ALPATEMP,ALP'VI'EMP

YIELDTEMP,HARDTEMP

number of materials

begin sequential specification of different materials --> repeat NMA T times

material name

material identification number (1, 2 ..... NMAT)

Number or temperatures at which material properties are specified

begin sequential material property input at a given temperature --> repeat
NTEMP times

temperature number (!, 2 ..... NTEMP), temperature at which material
properties are specified

axial and transverse thermal conductivities at TEMP

axial and transverse Young's moduli, and axial shear modulus at TEMP

axial and transverse Poisson's ratios at TEMP

axial and transverse thermal expansion coefficients at TEMP

yield stress and hardening slope at TEMP

end of material property input at a given temperature

end of material property input for NMAT materials at NTEMP temperatures

Note: HARDTEMP is obtained from a uniaxial stress-strain curve at a given temperature. It is defined as:
HARDTEMP = da/de p = m'El(E-m) where m = da/dg
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Block 2: Loading specification and write options

TREF

AMPTOPT, AMPB OTI"

LOADTOPM,LOADBOTM

AMPTOPM,AMPBOTM

ISW,FLOAD

OMEGAF

NINT,NINA

MAXITERATION

NSTEP

NPLOT 1,NPLOT2,NPLOT3,NPLOT4

JPLOT,KPLOT

reference temperature

maximum temperatures applied at the top and bottom surfaces

mechanical loading type indicators for top and bottom surfaces: 1 ->
radial traction; 2 -> radial displacement

maximum values of mechanical loading (radial traction/displacement)

axial constraint indicator, magnitude of axial load: ISW= 1 -> average
axial strain imposed; ISW=2 -> average axial stress imposed

magnitude of steady-state angular velocity

total number of load increments used in the solution of equations (4)
and (13) -> defines load increment size; actual number of load
increments

number of iterations used in the solution of equation (13) at each load
increment

number of load increments between which output data is written to
the fgmp.tube, out file

specification of the four increments at which output results are
written to thefgmp.tube.plot file

specification of the subcells I_, T through which output results are
written to thefgmp.tube.plot file

Block 3: Specification of the cylinder architecture and geometry

M

NCELL,D1 ,D2

NTHETA,H 1H2,R0

LI,L2

NCELL I ,MATNUM

number of cells in the radial direction

begin subcell dimensions specifications --> repeat M times

cell number, subceli dimensions dt pl and d_ )

end of subcell dimensions specifications for M cells

number of cells along the 0-direction, ratio of the subcell
dimensions hi/h2, inner radius of the cylinder

subcell dimensions Ii and 12

begin subcell material assignment --> repeat M times

cell number, material assignment in the eight subcells (I 1 1) --> (2
2 2) of each cell

end of subcell material assignment for M cells
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Block 4: Specification of the approximation of integration of the plastic strain field in the individual subceUs in
equation (13)

NLEG 1,NLEG2,NLEG3

J1,J2,J3

order of Legendre polynomials in the radial, angular and axial direction

number of integration points in the radial, angular and axial directions
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7.2 Appendix 2

The input file fgmp.tube.data for the case described in section 4.2.2 is given below. The

highlighted text, not to be included in the input deck, identifies the four blocks of the input data.

Block I

2

SiC

1

1

1 0.0E+00

8.0 8.0

399.90E+09
0.25E+00

I. 00E-06

0.00E+06

399.90E+09

0.25E+00

1.00E-06

23.00E+09

159.96E÷09

NMAT

MNAME

ID

NTEMP

IT1, TEMP

CONDATEMP, CONDTTEMP

EATEMP, ETTEMP, GATEMP

FNATEMP ,FNTTEMP

ALPATEMP ,ALPTTEMP

YIELDTEMP, HARDTEMP

Ti

1

1

1 0.0E+00

8.0

110.30E+09

0.26E+00

1.00E-06

71.60E+06

Block 2

8.0

Ii0.30E+09

0.26E+00

1.00E-06

23.00E+09

0

0 0

1 1

0 0.

2 0.

7700E2

i00 I00

i0

25

1 i00

1 1

Block3

I0000 i0000

5

1

2

3

4

5

125
0

1

2

3

4

5

Block 4

0.2344E-3

0.4688E-3

0.4688E-3
0.4688E-3

0.2344E-3

1.72

.8062E-3 0.4688E-3

22221122

22221122

22221122

22221122

22221111

2 2 2

5 5 5

43.77E+09

0.8062E-3

0.8062E-3

0.8062E-3

0.8062E-3

0.I000E-8

25.4E-3

TREF

AMPTOPT,AMPBOTT

LOADTOPM,LOADBOTM

AMPTOPM,AMPBOTM

ISW, FLOAD
OMEGAF

NINT,NINA
MAXITERATION

NSTEP

NPLOTI,NPLOT2,NPLOT3oNPLOT4

JPLOT,KPLOT

M

NCELL, DI, D2

NTHETA,HIH2,R0

LI,L2
NCELLI,MATNUM(I,I,I)...MATNUM(2,2,2)

NLEGI,NLEG2,NLEG3

Ji,J2,J3
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7.3 Appendix 3

The output file fgmp.tube.out generated by the input file fgmp.tube.data of the preceding

section is given below.

** FUNCTIONALLY GRADED CYLINDRICAL TUBE **

** IN THE RADIAL (THICKNESS) DIRECTION **

** DETERMINATION OF THE BEHAVIOR OF ELASTIC **

** AND ELASTOPLASTIC RESPONSE OF TEPERATURE- **

** DEPENDENT MULTI-PHASE FG TUBE **

* * PROGRAMMED BY * *

** JACOB ABOUDI **

** HAY 1996 **
****************************************************

************* INPUT DATA ECHO **************

MATERIAL SPECIFICATION

NUMBER OF MATERIALS (NMAT) = 2

MATERIAL 1

AXIS OF SYMMETRY OF THE TRANSVERSELY ISOTROPIC MATERIAL IS

NUMBER OF DIFFERENT TEMPERATURES (NTEMP)= 1

TEMPR. # = 1

THERMAL CONDUCTIVITIES

KA = 0.800E+01 KT =

THERMO~ELASTIC CONSTANTS

EA = 0.400E+12 ET =

NUA = 0.250E+00 NUT =

ALFA = 0.100E-05 ALFT =

INELASTIC PARAMETERS

YIELD = 0.000E+00 HARDENING =

TEMPR. = 0.000E+00

0.800E+01

0.400E+12

0.250E+00

0.100E-05

GA = 0.160E+12

0.230E+II

MATERIAL 2

AXIS OF SYMMETRY OF THE TRANSVERSELY ISOTROPIC MATERIAL IS

NUMBER OF DIFFERENT TEMPERATURES (NTEMP)= 1

TEMPR. # = 1

THERMAL CONDUCTIVITIES

KA = 0.800E+01 KT =

THERMO-ELASTIC CONSTANTS

EA = 0.110E+I2 ET =

NUA = 0.260E+00 NUT =

ALFA = 0.100E-05 ALFT =

TEMPR. = O.O00E+O0

0.800E+01

0.110E*I2

0.260E+00

0.100E-05

GA = 0.438E+II

: 1

: 1
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INELASTIC PARAMETERS

YIELD = 0.372E+09 HARDENING = 0.230E+II

LOADING SPECIFICATION

THE REFERENCE TEMPERATURE = 0.000E+00

APPLIED TEMPERATURE DEVIATION FROM TREF. AT THE OUTER SURFACE = 0.000E+00

APPLIED TEMPERATURE DEVIATION FROM TREF. AT THE INNER SURFACE = 0.000E+00

TYPES OF MECHANICAL LOADING AT THE OUTER AND INNER SURFACES : 1 AND 1

AMPLITUDES OF MECHANICAL LOADING AT THE OUTER AND INNER SURFACES : 0.000E+00 0.000E+00

IMPOSE SIGMAB33 = 0.000E+00

FINAL ROTATIONAL VELOCITY = OMEGAF = 0.770E+06

NUMBER OF INTEGRATION INCREMENTS = 100

ACTUAL NUMBER OF INCREMENTS = 100

MAX. NO. OF MENDELSON SUCCESSIVE ITERATIONS = i0

NUMBER OF PRINT STEPS OF THE FIELD = 25

RESULTS ARE PLOTTED AT THE FOLLOWING 4 INCREMENTS :

1 i00 10000 10000

PLOTTING THROUGH SUBCELLS : J=l K=I

GEOMETRY SPECIFICATION

NUMBER OF CELLS IN THE X-I DIRECTION = 5

CELL # = 1

CELL # = 2

CELL # = 3

CELL # = 4

CELL # = 5

D1 = 0.234E-03

D1 = 0.469E-03

D1 = 0.469E-03

D1 = 0.469E-03

D1 = 0.234E-03

D2 = 0.806E-03

D2 = 0.806E-03

D2 = 0.806E-03

D2 = 0.806E-03

D2 = 0.100E-08

NO. OF CELLS IN THE THETA DIRECTION = NTHETA = 125

HI / H2 = 0.172E+01

TUBE INNER RADIUS = R0 = 0.254E-01

L1 = 0.806E-03 L2 = 0.469E-03

CELL # = 1

CELL # = 2

CELL # = 3

CELL # = 4

CELL # = 5

SUBCELL MATERIAL ASSIGNMENT

2 2 2 2 1 1 2 2

2 2 2 2 1 1 2 2

2 2 2 2 1 1 2 2

2 2 2 2 1 1 2 2

2 2 2 2 1 1 1 1

ORDER OF LEGENDRE POLYNOME = 2 2 2

NUMBER OF INTEGRATION POINTS = 5 5 5

**************** OUTPUT *******************

TOTAL NO. OF CELLS = M = 5

TOTAL THICKNESS IN XI-DIRECTION= 0.510E-02

R0 / THICKNESS = 0.498E+01
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THETAI(deg) = 0.182E+01 THETA2(deg) = 0.106E+01

NCELL= I DI= 0.234E-03

HI= 0.811E-03

D2= 0.806E-03

H2= 0.472E-03

DI+D2= 0.I04E-02

HI+H2= 0.128E-02

NCELL= 2 DI= 0.469E-03

HI= 0.848E-03

D2= 0.806E-03

H2= 0.493E-03

DI+D2= 0.128E-02

HI+H2= 0.134E-02

NCELL= 3 DI= 0.469E-03

HI= 0.888E-03

D2= 0.806E-03

H2= 0.517E-03

DI+D2= 0.128E-02

HI+H2= 0.140E-02

NCELL= 4 DI= 0.469E-03

HI= 0.929E-03

D2= 0.806E-03

H2= 0.540E-03

DI+D2= 0.128E-02

HI+H2= 0.147E-02

NCELL= 5 DI= 0.234E-03

HI= 0.966E-03

D2= 0.I00E-08

H2= 0.561E-03

DI+D2= 0.234E-03

HI+H2= 0.153E-02

LI= 0.806E-03 L2= 0.469E-03 LI+L2= 0.128E-02

MATERIAL # = 1

MATERIAL # = 2

VOLUME RATIO = 0.400E+00

VOLUME RATIO = 0.600E+00

INCREMENT= 1

NCELL= 1 NSUB=I (i,i,I)

TEMP= 0.000E÷00

JJl= 1 XI= 0.000E+00

EPS = -0.967E-07 0.333E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.313E-04 0.376E+05 0.344E+04 0.330E+04 -0.873E+02

NCELL= 1 NSUB=I (I,i,i)

TEMP= 0.000E+00

JJl= 3 XI= 0.117E-03

EPS = -0.109E-06 0.331E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.181E+04 0.367E+05 0.274E+04 0.330E+04 -0.873E+02

NCELL= 1 NSUB=I (i,I,I)

TEMP= 0.000E+00

JJl= 5 XI= 0.234E-03

EPS = -0.122E-06 0.329E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.363E+04 0.358E+05 0.204E+04 0.330E+04 -0.873E+02

NCELL= 1 NSUB=5 (2,1,1) JJl= 1 XI= 0.234E-03

TEMP= 0.000E+00 EPS = -0.487E-07 0.176E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.443E+04 0.674E+05 -0.720E+04 0.405E+03 -0.142E+03

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.638E-03

EPS = -0.491E-07 0.175E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.475E+04 0.670E+05 -0.739E+04 0.405E+03 -0.142E+03

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 5 XI= 0.104E-02

EPS = -0.495E-07 0.174E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.508E+04 0.665E+05 -0.758E+04 0.405E+03 -0.142E+03

NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 5 NSUB=I (1,1,1)

TEMP= 0.000E+00

NCELL= 5 NSUB=I (i,I,i)

JJl= 1 XI= 0.487E-02

EPS = -0.884E-07 0.265E-06 -0.575E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.208E+04 0.289E+05 0.622E+03 -0.301E+04 -0.821E+02

JJl= 3 Xl= 0.498E-02

EPS = -0.805E-07 0.265E-06 -0.575E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.104E+04 0.292E+05 0.978E+03 -0.301E+04 -0.821E+02

JJl= 5 XI= 0.510E-02
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TEMP= 0.000E+00 EPS = -0.727E-07 0.264E-06 -0.575E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.163E+01 0.295E+05 0.134E+04 -0.301E+04 -0.821E+02

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 Xl= 0.510E-02

EPS = -0.675E-07 0.260E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.345E-01 0.I05E+06 0.323E+04 -0.976E+04 -0.140E+03

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.510E-02

EPS = -0.675E-07 0.260E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.173E-01 0.I05E+06 0.323E+04 -0.976E+04 -0.140E+03

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.675E-07 0.260E-06 -0.574E-07

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.924E-10 0.I05E+06 0.323E+04 -0.976E+04 -0.140E+03

AVERAGE TEMP. DEVIATION = DTEMPB= 0.000E+00

AVERAGE STRAIN= -0.720E-07 -0.678E-21 -0.574E-07

AVERAGE STRESS= 0.748E+02 0.507E+05 -0.381E-09

INCREMENT= 25

NCELL= 1 NSUB=I (i,I,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,I,I)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 XI= 0.000E+00

EPS = -0.604E-04 0.208E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.196E-01 0.235E+08 0.215E+07 0.207E+07 -0.546E+05

JJl= 3 XI= 0.I17E-03

EPS = -0.684E-04 0.207E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.I13E+07 0.229E+08 0.171E+07 0.207E+07 -0.546E+05

JJl= 5 Xl= 0.234E-03

EPS = -0.764E-04 0.205E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.227E+07 0.224E+08 0.128E+07 0.207E+07 -0.546E+05

JJl= 1 XI= 0.234E-03

EPS = -0.304E-04 0.110E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.277E+07 0.421E+08 -0.450E+07 0.253E+06 -0.890E+05

JJl= 3 Xl= 0.638E-03

EPS = -0.307E-04 0.109E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.297E+07 0.419E+08 -0.462E+07 0.253E+06 -0.890E+05

JJl= 5 Xl= 0.I04E-02

EPS = -0.310E-04 0.I09E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.317E+07 0.416E+08 -0.474E+07 0.253E+06 -0.890E+05

NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 5 NSUB=I (i,I,i)

TEMP= 0.000E+00

JJl= 1 Xl= 0.487E-02

EPS = -0.552E-04 0.166E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.130E+07 0.180E+08 0.389E+06 -0.188E+07 -0.513E+05

JJl= 3 XI= 0.498E-02

EPS = -0.503E-04 0.165E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.651E+06 0.182E+08 0.611E+06 -0.188E+07 -0.513E+05
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NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = ~0.454E-04 0.165E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.102E+04 0.184E+08 0.835E+06 -0.188E+07 -0.513E+05

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 Xl= 0.510E-02

EPS = ~0.422E-04 0.162E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= ~0.216E+02 0.655E+08 0.202E+07 -0.610E+07 -0.873E+05

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.510E-02

EPS = -0.422E-04 0.162E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.I08E+02 0.655E+08 0.202E+07 -0.610E+07 -0.873E+05

NCELL= 5 NSUB=5 (2,1,i)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = ~0.422E-04 0.162E-03 -0.359E-04

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= ~0.355E-06 0.655E+08 0.202E+07 -0.610E+07 -0.873E+05

AVERAGE TEMP. DEVIATION = DTEMPB= 0.000E+00

AVERAGE STRAIN= -0.450E-04 -0.441E-17 -0.359E-04

AVERAGE STRESS= 0.467E+05 0.317E+08 -0.451E-06

INCREMENT= 50

NCELL= 1 NSUB=I (i,I,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,I)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 Xl= 0.000E+00

EPS = -0.242E-03 0.831E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.782E-01 0.939E+08 0.860E+07 0.826E+07 -0.218E+06

JJl= 3 XI= 0.117E-03

EPS = -0.274E-03 0.826E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.453E+07 0.918E+08 0.686E+07 0.826E+07 -0.218E+06

JJl= 5 XI= 0.234E-03

EPS = ~0.305E-03 0.821E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.907E+07 0.896E+08 0.511E+07 0.826E+07 -0.218E+06

JJl= 1 XI= 0.234E-03

EPS = ~0.122E-03 0.440E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= ~0.111E+08 0.168E+09 -0.180E+08 0.101E+07 -0.356E+06

JJl= 3 XI= 0.638E-03

EPS = -0.123E-03 0.438E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.119E+08 0.167E+09 -0.185E+08 0.101E+07 -0.356E+06

JJl= 5 XI= 0.104E-02

EPS = -0.124E-03 0.436E-03 -0.143E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.127E+08 0.166E+09 -0.190E+08 0.101E+07 -0.356E+06

NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

JJl= 1 XI= 0.487E-02

EPS = -0.221E-03 0.663E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.521E+07 0.721E+08 0.155E+07 -0.753E+07 -0.205E+06

JJl= 3 XI= 0.498E-02

EPS = -0.201E-03 0.662E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.261E+07 0.729E+08 0.245E+07 -0.753E+07 -0.205E+06
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NCELL= 5 NSUB=I (i,i,i)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.182E-03 0.661E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.408E+04 0.738E+08 0.334E+07 -0.753E+07 -0.205E+06

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 XI= 0.510E-02

EPS = -0.169E-03 0.650E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.864E+02 0.262E+09 0.807E+07 -0.244E+08 -0.349E+06

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.510E-02

EPS = -0.169E-03 0.650E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.432E+02 0.262E+09 0.807E+07 -0.244E+08 -0.349E+06

NCELL= 5 NSUB=5 (2,1,i)

TEMP= 0.000E+00

JJl= 5 Xl= 0.510E-02

EPS = -0.169E-03 0.650E-03 -0.144E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.142E-05 0.262E+09 0.807E+07 -0.244E+08 -0.349E+06

AVERAGE TEMP. DEVIATION = DTEMPB= 0.000E+00

AVERAGE STRAIN= -0.180E-03 -0.176E-16 -0.144E-03

AVERAGE STRESS= 0.187E+06 0.127E+09 -0.180E-05

INCREMENT= 75

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 XI= 0.000E+00

EPS = -0.544E-03 0.187E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.176E+00 0.211E+09 0.194E+08 0.186E+08 -0.491E+06

JJl= 3 XI= 0.117E-03

EPS = -0.615E-03 0.186Ez02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.I02E+08 0.206E+09 0.154E+08 0.186E+08 -0.491E+06

JJl= 5 XI= 0.234E-03

EPS = -0.687E-03 0.185E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.204E+08 0.202E+09 0.115E+08 0.186E+08 -0.491E+06

JJl= 1 XI= 0.234E-03

EPS = -0.274E-03 0.989E-03 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.249E+08 0.379E+09 -0.405E+08 0.228E+07 -0.801E+06

JJl= 3 XI= 0.638E-03

EPS = -0.276E-03 0.985E-03 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.267E+08 0.377E+09 -0.416E+08

0.000E+00 0.000E+00

0.228E+07 -0.801E+06

JJl= 5 XI= 0.104E-02

EPS = -0.279E-03 0.980E-03 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.286E+08 0.374E+09 -0.426E+08

0.000E+00 0.000E+00

0.228E+07 -0.801E+06

NCELL= 5 NSUB=I (i,i,I)

TEMP= 0.000E+00

NCELL= 5 NSUB=I (I,i,i)

TEMP= 0.000E+00

JJl= 1 Xl= 0.487E-02

EPS = -0.497E-03 0.149E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.117E+08 0.162E+09 0.350E+07 -0.169E+08 -0.462E+06

JJl= 3 XI= 0.498E-02

EPS = -0.453E-03 0.149E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.586E+07 0.164E+09 0.550E+07 -0.169E+08 -0.462E+06

44



NCELL= 5 NSUB= 1 (I,i,i)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.409E-03 0.149E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.917E+04 0.166E+09 0.751E+07 -0.169E+08 -0.462E+06

NCELL= 5 NSUB=5 (2,1, I)

TEMP= 0.000E+00

JJl= 1 XI= 0.510E-02

EPS = -0.380E-03 0.146E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.194E+03 0.589E+09 0.182E+08 -0.549E+08 -0.785E+06

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.510E-02

EPS = -0.380E-03 0.146E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.972E+02 0.589E+09 0.182E+08 -0.549E+08 -0.785E+06

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.380E-03 0.146E-02 -0.323E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.321E-05 0.589E+09 0.182E+08 -0.549E+08 -0.785E+06

AVERAGE TEMP. DEVIATION = DTEMPB= 0.000E+00

AVERAGE STRAIN= -0.405E-03 0.927E-17 -0.323E-03

AVERAGE STRESS= 0.420E+06 0.285E+09 0.336E-05

INCREMENT= 100

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=I (i,i,i)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1ol)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1oi)

TEMP= 0.000E+00

NCELL= 1 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 XI= 0.000E+00

EPS = -0.194E-02 0.483E-02 -0.737E-03

EPSP = -0.709E-03 0.I13E-02 -0.423E-03 -0.875E-20 -0.119E-22

SIGMA= 0.314E+06 0.416E+09 0.786E+08 0.725E+08 -0.816E+06

EFF. STRESSES= 0.398E+09 0.403E+09

JJl= 3 XI= 0.117E-03

EPS = -0.229E-02 0.480E-02 -0.737E-03

EPSP = -0.825E-03 0.125E-02 -0.420E-03 -0.193E-19 0.485E-23

SIGMA= -0.380E+08 0.386E+09 0.598E+08 0.725E+08 -0.816E+06

EFF. STRESSES= 0.401E+09 0.404E+09

JJl= 5 XI= 0.234E-03

EPS = -0.264E-02 0.477E-02 -0.737E-03

EPSP = -0.949E-03 0.136E-02 -0.411E-03 -0.143E-19 -0.300E-22

SIGMA= -0.757E+08 0.356E+09 0.406E+08 0.725E+08 -0.816E+06

EFF. STRESSES= 0.404E÷09 0.407E+09

JJl= 1 XI= 0.234E-03

EPS = -0.526E-03 0.177E-02 -0.736E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.865E+08 0.649E+09 -0.154E+09

0.000E+00 0.000E+00

0.891E+07 -0.151E+07

JJl= 3 XI= 0.638E-03

EPS = -0.546E-03 0.176E-02 -0.736E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.973E÷08 0.642E+09 -0.158E+09

0.000E+00 0.000E+00

0.891E+07 -0.151E+07

JJl= 5 Xl= 0.104E-02

EPS = -0.565E-03 0.176E-02 -0.736E-03

EPSP = 0.000E÷00 0.000E+00 0.000E+00

SIGMA= -0.108E+09 0.635E+09 -0.163E+09

0.000E+00 0.000E+00

0.891E÷07 -0.151E+07

NCELL= 5 NSUB=I (I,I,i)

TEMP= 0.000E+00

JJl= 1 Xl= 0.487E-02

EPS = -0.149E-02 0.354E-02 -0.738E-03

EPSP = -0.167E-03 0.271E-03 -0.I04E-03 -0.440E-21 0.636E-24

SIGMA= -0.491E+08 0.341E÷09 0.947E+07 -0.634E+08 -0.807E+06

EFF. STRESSES= 0.378E+09 0.381E+09
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NCELL= 5 NSUB=I (i,I,i)

TEMP= 0.000E+00

JJl= 3 Xl= 0.498E-02

EPS = -0.127E-02 0.353E-02 -0.738E-03

EPSP = -0.117E-03 0.199E-03 -0.824E-04 -0.137E-21 -0.I08E-23

SIGMA= -0.247E+08 0.357E+09 0.179E+08 -0.634E+08 -0.807E+06

EFF. STRESSES= 0.376E+09 0.378E+09

NCELL= 5 NSUB=I (I,i,i)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.105E-02 0.353E-02 -0.738E-03

EPSP = -0.734E-04 0.133E-03 -0.593E-04 -0.315E-21 0.164E-23

SIGMA= 0.392E+06 0.372E+09 0.262E+08 -0.634E+08 -0.807E+06

EFF. STRESSES= 0.375E+09 0.376E+09

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 1 XI= 0.510E-02

EPS = -0.870E-03 0.335E-02 -0.737E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.794E+03 0.135E+10 0.427E+08 -0.222E+09 -0.137E+07

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 3 XI= 0.510E-02

EPS = -0.870E-03 0.335E-02 -0.737E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= -0.397E+03 0.135E+I0 0.427E+08 -0.222E+09 -0.137E+07

NCELL= 5 NSUB=5 (2,1,1)

TEMP= 0.000E+00

JJl= 5 XI= 0.510E-02

EPS = -0.870E-03 0.335E-02 -0.737E-03

EPSP = 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SIGMA= 0.545E-05 0.135E+I0 0.427E+08 -0.222E+09 -0.137E+07

AVERAGE TEMP. DEVIATION = DTEMPB= 0.000E+00

AVERAGE STRAIN= -0.123E-02 -0.226E-16 -0.737E-03

AVERAGE STRESS= -0.854E+06 0.518E+09 0.651E+05

END OF JOB
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7.4 Appendix 4

The input data file fgmp.tube.opt.data.initial defines the optimization problem and contains

information on the initial values of the design variables as describes in section 3.2. Its structure,

the variable names and their description read by the program are given below.

ICASE axial constraint indicator: 1 -> plane strain constraint; 2 -> generalized
plane strain constraint

METHODM

MINMAX

HH

DF

I,X

method of optimization used within DOT: ! -> method of feasible directions

indicates whether the user-defined objective function is to be minimized or
maximized: -1 -> minimized; ! -> maximized

total cylinder thickness

radial fiber dimension

begin specification of initial reinforcement spacing --> repeat NDV
(number of design variables) times

design variable number, initial spacing between reinforcement

end of initial reinforcement spacing specifications

The inut filefgmp.tube.opt.data is organized into four distinct blocks, as explained in sec-

tion 3.2, along the same lines as those forfgmp.tube.data. The structure of these input data files,

the variable names and their description read by the program are given below.

Block 1: Material properties for NMT materials at NTEMP identical temperatures

The names and sequence of the variables employed in this block are identical to those in the corresponding block of
the filefgmp.tube.data given in Appendix 1.

Block 2: Loading specification and write options

TREF

AMPTOPT,AMPBOTT

LOADTOPM,LOADBOTM

reference temperature

maximum temperatures applied at the top and bottom surfaces

mechanical loading type indicators for top and bottom surfaces: 1 ->
radial traction; 2 -> radial displacement
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AMPTOPM,AMPBOTM

ISW,FLOAD

OMEGAF

NINT,NINA

MAXITERATION

JPLOT,KPLOT

maximumvaluesof mechanical loading (radial traction/displacement)

axial constraint indicator, magnitude of axial load: ISW=I -> average
axial strain imposed; ISW=2 -> average axial stress imposed

magnitude of steady-state angular velocity

total number of load increments used in the solution of equations (4)
and (13) -> defines load increment size; actual number of load
increments

number of iterations used in the solution of equation (! 3) at each load
increment

specification of the subcells 13, T through which output results are
written to the fgmp.tube.plot file

Block 3: Specification of the cylinder architecture and geometry

M

DF, HH

NTHETA,H 1H2,R0

L 1,L2

NCELLI ,MATNUM

number of cells in the radial direction

radial fiber dimension, total cylinder thickness

number of cells along the 0-direction, ratio of the subcell
dimensions hl/h 2, inner radius of the cylinder

subceil dimensions Ii and 12

begin subcell material assignment --> repeat M times

cell number, material assignment in the eight subcells (1 1 1) --> (2
2 2) of each cell

end of subcell material assignment for M cells

Block 4: Specification of the approximation of integration of the plastic strain field in the individual subcells in
equation (13)

The names and sequence of the variables employed in this block are identical to those in the corresponding block of
the filefgmp.tube.data given in Appendix 1.
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7.5 Appendix 5

The input file fgmp.tube.data.initial for the case described in section 4.3.2 is given below,

with the actual variable names (not to be included in the input deck) given on the right in block

letters.

2

1

-i
5.1E-3

0.8062E-3

1 0. 2344E-3

2 0.4688E-3

3 0.4688E-3

4 0.4688E-3

5 0.2344E-3

ICASE

METHODM

MINMAX

HH

DF

I,X

The input file fgmp.tube.data for the case described in section 4.3.2 is given below, with

the highlighted text identifying the four blocks of the input data and the actual variable names

(not to be included in the input deck) given on the right in block letters.

Block 1

2
SiC

1

1
1 0.0E+00

8.0 8.0

399.90E+09

0.25E+00

1.00E-06
0.00E+06

Ti

1

1

1 0.0E+00

8.0

I10.30E+09

0.26E+00

1.00E-06

71.60E+06

Bl_k2

399.90E+09

0.25E+00

1.00E-06

23.00E+09

8.0
II0.30E+09

0.26E+00

1.00E-06

23 .00E+09

159.96E+09

43.77E+09

NMAT

MNAME

ID

NTEMP

IT1, TEMP

CONDATEMP, CONDTTEMP

EATEMP, ETTEMP, GATEMP
FNATEMP, FNTTEMP

ALPATEMP, ALPTTEMP

YI ELDTEMP, HARDTEMP

0

0
1

0

2

7700E2

i00
10

1 1

0

i

0.

0.

I00

TREF

AMPTOPT,AMPBOTT

LOADTOPM, LOADBOTM

AMPTOPM,AMPBOTM

ISW, FLOAD

OMEGAF

NINT,NINA

MAXITERATION

JPLOT, KPLOT
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Block 3

5

0.8062E-3 5.1E-3

125 1.72

0.8062E-3 0.4688E-3

1 22221122

2 22221122

3 22221122

4 22221122

5 22221111

Block 4

2 2 2

5 5 5

25.4E-3

M

DF,HH
NTHETA,HIH2,R0

LI,L2

NCELLI,MATNUM(I,I,I)...MATNUM(2,2,2)

NLEGI,NLEG2oNLEG3

JI,J2,J3

5O
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